

Visions of tomorrow's chemical technologies: Pointers and pathways

Dr. Bansi L. Kaul
MCA Technologies GmbH
Switzerland
kaul@mcatechnologies.com
http://www.mcatechnologies.com

Key words: Environmentally friendly technologies and yet cost effective, Nanotechnologies, Colour beyond appearance, CO2 capture as raw material, Fire retardance of plastics and coatings, "Seed" concept in textiles.

MCA Technologies GmbH, Switzerland

Supporting R&D & Business Development in Life Sciences, and Specialty Chemicals Industries

- How: Cost, risk and benefit sharing
- >Our contribution: Financial and intellectual support
- Our objective: Competitive edge (products, technologies, services)
- >Seeking collaborations, partners, entrepreneurs

1 Polytriazinyl compounds as flame retardants and light stabilizers

Inventor: KAUL BANSI LAL [CH]

Applicant: MCA TECHNOLOGIES GMBH [CH]

EP2130854 (A2) - 2009-12-09

2 Process for the Preparation of Organic Materials

Inventor: KAUL BANSI LAL [CH]

Applicant: MCA TECHNOLOGIES GMBH [CH]

EC: <u>C09B67/00N2</u>; <u>C08K5/00P4</u>; (+1)

IPC: B32B27/10; B32B27/34; B32B27/38; (+19)

US2009017307 (A1) - 2009-01-15

3 Process for the Preparation of Organic Materials

Inventor: KAUL BANSI L [CH]

Applicant: MCA TECHNOLOGIES GMBH [CH]

EC: C09B67/00B9; C09B25/00; (+2)

IPC: C08K5/00; C08K5/00

US2008060554 (A1) - 2008-03-13

4 Process for the preparation of organic materials

Inventor: KAUL BANSI L [CH]

Applicant: MCA TECHNOLOGIES GMBH [CH]

EC: C09B48/00; C09B25/00; (+2)

IPC: C08K5/00; C09B25/00; C09B48/00; (+7)

US2007119345 (A1) - 2007-05-31

5 Process for the preparation of fluorescet and non-fluorescent pigments

Inventor: KAUL BANSI L [CH]

Applicant: MCA TECHNOLOGIES GMBH [CH]

EC: C09B67/00N2

IPC: C09K11/02; C03C17/00; C09B67/20; (+3)

US2006063855 (A1) - 2006-03-23

6 SOLVENT-FREE PROCESS FOR THE PREPARATION OF

DIKETOPYRROLOPYRROLE DERIVATIVES

Inventor: KAUL BANSI LAL [CH]

Applicant: MCA TECHNOLOGIES GMBH [CH]

EC: <u>C07D401/04</u>; <u>C07D209/46</u>; (+6)

IPC: C07D209/46: C07D401/04: C07D403/14: (+16)

KR20050106460 (A) - 2005-11-09

Patents:

MCA Technologies GmbH

Our commitment to novel technologies

Down the road of memory with KVM

Para 30/8/74 My dear Kanl, I am delighter to hear that you are coming to Poma on the 4th Sept. Please have dinner with no. I will also de happy to see you in the NCL at any time. getting in touch with you to ask you for a seminar. He is our Semina & Secretary. with undert regards

(Switzerland)

Code of composition of lac pigments: Colouring matters of Lac Larvae

 $A : R = CH_2CH_2COCH_3$

 $B: R = CH_2CH_2OH$

 $C: R = CH_2CH(NH_2)COOH$

 $E: R = CH_2CH_2NH_2$

Mystery of the methylation of lac pigments (laccaic acid)

Mechanism of reactive dyeing

Visions of tomorrow's chemical technologies:Pointers and pathways

Environmentally friendly technologies, and yet cost effective

Pointers of chemical technologies of tomorrow

- Energy efficiency: in which the exothermies/endothermies of the reactions are efficiently exploited for driving the reactions.
- Cost efficiency: higher productivity with same or less resources (equipment, man power and other investments)
- >Waste efficiency: less waste & pollution
- >Safety efficiency: Taming the chemistry
- **≻Over-all better value addition**

Pathways of chemical technologies of tomorrow

- >Solvent-free processes
- Surface chemistry reactions (including heterogeneous catalysis and phase transfer reactions)
- **≻**Solid-state reactions
- ➤ Continuous/semi-continuous process (micro reactors, extrusions)
- >Automation i.e. electronically remotecontrolled processes

Solvent-free technologies

Example: MCA® solvent-free technology of DPP pigments

DPP Pigments

Synthesis of Diketopyrrolopyrole (Farnum-Metha synthesis, 1974)

General Outline:

Reaction of two moles of a <u>nitrile</u> with one of <u>diisioalkyl succinate</u> in the presence of more than two moles of an <u>exotic sodium tertiary-alkylate</u>, in an <u>absolutely inert</u> and anhydrous <u>solvent</u> followed by hydrolysis and <u>finishing</u>:

For Example EP 61426 & 98808 (*Iqbal et al., 1982,1984*); USP 6,375,732 (*Kaul , et. al, 2002*)

Reaction Scheme:

$$R_4$$
 CN
 R_6
 CN
 R_6
 R_7
 R_8
 R_8

For Example EP 61426 & 98808 (*Iqbal et al., 1982,1984*); USP 6,375,732 (*Kaul , et. al, 2002*)

Mechanism of the synthesis of diketopyrrolopyrole pigments

$$\begin{array}{c} \oplus \\ \text{Na} \\ \text{N$$

DPP State-of-the-art

technology: By-products

2)

Corner stones of State-of-theart DPP technology

- Synthesis of the base
- Synthesis of the DPP disodium salt
- Formation of the crude pigment
- Purification & finishing of the crude (different solvent)
- Regeneration and rectification of the solvents
- Waste management

1. Synthesis of the base

Drawbacks:

Hazard of storing and handling of sodium, an exotic reagent for a pigment producer

- Very slow reaction, high energy costs/ low throughput
- Formation of extremely hazardous gaseous hydrogen
- •Exotic and expensive base if purchased from outside

2. Synthesis of the disodium salts of pigments

$$R_4$$
 CN
 R_6
 R_6
 R_7
 R_8
 R_8

- •Use of high-purity, absolutely anhydrous exotic inert solvent
- Anhydrous conditions
- •High dilution/low productivity due to high viscosity
- Special stirring conditions, due to high viscosity

3. Synthesis of crude pigments

$$R_4$$
 R_4
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8

Drawbacks:

Tedious work-up

4. Finishing of pigments

Drawbacks:

- Cost
- High energy consumption

5. Solvent recovery:

Absolute key success factor (pure and anhydrous)

Drawbacks:

- Cost
- High energy consumption
- Waste (solvent losses)

6. Formation of toxic aldehyde

Drawbacks:

Waste, safety and environmental issues

Solvent-free Synthesis

MCA® DPP pigment technology (Green Technology)

MCA DPP Pigment Technology versus State-of-the-art DPP Pigment Technology

MCA® DPP pigments technology (Green Technology)

Less energy demand

- Less total quantities of chemicals to heat and cool, for same quantity of the end-product
- >Heat of reaction fully utilized to drive the reaction
- ➤ No tedious solvent recovery (fractionations) required

Est. Energy Demand Ratio = 5:1

MCA® DPP pigment technology (Green Technology)

Higher productivity

- > Much smaller reaction volumes/unit of end-product
- ➤ No solvent recovery and recycling required

Less safety risk

(in production & for the environment)

Less storage and handling of highly inflammable solvents

Less waste

solvent losses, by-products

Less investments and maintenance costs

for storage and tedious fractionation of the solvent

Quality

Regularly shaped nanoparticles (required for LCD)

MCA DPP Pigment technology: By-products formed : HPLC of the reaction mixtures

MCA DPP pigment technology: Zero-emission Pilot Plant- Germany

MCA DPP pigment technology: production plant

MCA DPP pigment technology : Patents

C TECHNOLOGIES GmbH
A (Switzerland)

European Patent: Granted

Indian Patent: Granted

Chinese Patent: Granted

USA: Granted

Japan: Pending

Synthesis of 4-cyanobiphenyl for DPP pigments

Purity > 99 %

Cyanobiphenyls as fine chemicals of the pharmaceuticals Industry of technologies GmbH (Switzerland)

Visions of tomorrow's chemical technologies:Pointers and pathways

Nanoparticles

What are nanoparticles?

Definition

No accepted international definition, usually under 100 nm (1 nanometer = 0.001 micron). But generally the size at which materials display different properties to the bulk material.

What is unique about a nanoparticle?

High efficacy and effectiveness of the inherent properties, because of its high surface area.

Nanoparticles

Applications:

Required and desired where solid materials are used in finely dispersed form, such as in drug delivery systems, cosmetics, agro chemicals, coatings, plastics, inks & textiles, only to name a few applications

Problems:

1) Difficult to disperse. And, once dispersed, they tend to re-agglomerate & reaggregate, because of their high specific surface area and energy
2) Durability & stability problems (susceptibility to light, heat, chemicals and atmosphere etc), again because of surface chemistry.

Manufacturing methods:

Made from the bulk materials, requiring lot of energy. Many also made directly as dry powders, and it is a common myth that these powders will stay in the same state, and when used.

Solutions:

Formation of regularly shaped particles

Electronics applications of seminanoparticle pigments for colour filters of LCDs

DPP

Colour filter of liquid crystal displays

Digital colour displays and expression

Software

Hardware

Pixel defects of LCDs

Pixelfehler: Statt gleichmässiger Pixelverteilung gibt es störende helle (linkes Bild) oder dunkle Flecken (r.)

MCA (nano)technology vs. State-of-theart (nano)technology

MCA DPP CF

State-of-the-art DPP CF

SEM pictures

MCA DPP pigment technology: Finishing of (DPP) pigments

- Specific & controlled particle size distribution for diverse applications
- Narrow Particle size distribution, for easy dispersibility and better coloristic properties
- Easy "Additivation" if and when required, for specific Applications

Nanotechnology

